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P Lajkó†‡ and L Turban†
† Laboratoire de Physique des Matériaux, Universit́e Henri Poincaŕe (Nancy I), BP 239,
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Abstract. The finite-size scaling behaviour for percolation and conduction is studied in two-
dimensional triangular-shaped random resistor networks at the percolation threshold. The
numerical simulations are performed using an efficient star–triangle algorithm. The percolation
exponents, linked to the critical behaviour at corners, are in good agreement with the conformal
results. The conductivity exponent,t ′ = ζ/ν, is found to be independent of the shape of the system.
Its value is very close to recent estimates for the surface and bulk conductivity exponents.

1. Introduction

Since the paper of Cardy [1] we know that, at a second-order phase transition, the local
critical behaviour can be influenced by the shape of the system. Furthermore, in the case of
conformally invariant two-dimensional (2D) systems, the tools of conformal invariance can be
used, at the critical point, to relate the local critical behaviour at a corner to the surface critical
behaviour [2, 3]. The corner shape, which is scale invariant, leads to local exponents varying
continuously with the opening angle. This marginal local critical behaviour has been indeed
observed numerically for different systems (see [4] for a review) and, more recently, analytical
results have been obtained for the Ising model [5–8].

In this paper, we present a numerical study of the critical behaviour of 2D random resistor
networks with triangular shapes. This problem involves two sets of exponents, namely the
percolation exponents and the conductivity exponents [9–11]. Although our main interest
concerns the conduction exponents, our simulations allow us, as a by-product, to check the
conformal predictions for the corner exponents of the percolation problem.

The percolation exponents are known exactly, both in the bulk and at the surface, through
a correspondance with the limitq → 1 of theq-state Potts model [12–14]. The conformal
aspects of the critical percolation problem in finite geometries have been extensively studied
in [15], following the work of [16]. Conformal invariance has been also verified in a transfer-
matrix calculation of the surface percolation exponent, using the gap-exponent relation [17].
The critical behaviour at surface and corners has been considered in [18] where the conduction
problem is addressed briefly.

A recent series expansion study [19] suggests that the surface conductivity has the same
critical behaviour as the bulk one (see [20] and references therein). The main purpose of this
paper is to examine, with high numerical accuracy, whether the shape of a finite system may
have some influence on the scaling behaviour of the conductivity.

We study the finite-size-scaling behaviour of the conductance and percolation probability
between points located at the corners of a triangle, either on the triangular or on the square
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lattice. As in the Lobb–Frank algorithm [21], the numerical technique involves a succession
of triangle–star and star–triangle transformations, which allows one to reduce the triangular
resistor network to a star network in a finite number of steps.

In section 2 we introduce the different correlation functions of the percolation and
conduction problems and define the associated exponents. We also review the conformal
results for the corner exponents. In section 3 we give a detailed explanation of the triangle–
star star–triangle algorithm. The finite-size scaling simulation results are presented in section 4
and discussed in section 5.

2. Percolation and conduction correlation functions

We consider a random resistor network for which each lattice bond has a probabilityp to have
a unit conductance and 1−p to be an insulator. Let the connectedness characteristic function
cij be defined as

cij =
{

1 if sitesi andj are connected

0 otherwise.
(2.1)

With [. . .]av denoting a configurational average, the percolation correlation function

Pij = [cij ]av (2.2)

gives the probability that sitesi andj belong to the same cluster of conducting bonds. The
average conductance given by

Gij = [gij ]av (2.3)

wheregij is the conductance of the system between sitesi andj , plays the role of a correlation
function, or non-local conductive susceptibility, for the conduction problem [22]. LetN

be the number of samples taken into account in the configurational average andNcon the
corresponding number of samples for which sitesi and j are connected. The correlation
functions in equations (2.2) and (2.3) can be rewritten explicitly as

Pij = lim
N→∞

1

N

N∑
α=1

cαij = lim
N→∞

Ncon

N

Gij = lim
N→∞

1

N

N∑
α=1

gαij = lim
N→∞

Ncon

N

1

Ncon

Ncon∑
α=1

[gcon
ij ]α.

(2.4)

Thus one can define the reduced conduction correlation function

0ij = Gij

Pij
= lim

N→∞
1

Ncon

Ncon∑
α=1

[gcon
ij ]α (2.5)

which gives the average conductance between two pointsi andj when they belong to the same
percolation cluster.

In an infinite system, for two points at a distancerij = r, the correlation functions display
a power law decay

Pij ∼ r−2x 0ij ∼ r−ζ/ν (2.6)

at the percolation thresholdp = pc. The exponentsx andν are the scaling dimension of the bulk
order parameter and the correlation length exponent for the percolation problem, respectively.
The conductivity exponentζ governs the behaviour of the macrosopic conductivity near the
percolation threshold where [23]

6 ∼ (p − pc)
t t = νt ′ = ζ + (d − 2)ν p > pc. (2.7)
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Note thatζ/ν = t ′ in two dimensions.
As mentioned in the introduction, the percolation exponents are exactly known in two

dimensions through a correspondance with theq-state Potts model [24,25]:

ν = 4
3 x = 5

48 xs = 1
3 (2.8)

wherexs is the scaling dimension of the surface order parameter at the ordinary transition.
Recent high-statistics simulations led to the following accurate estimate for the

conductivity exponent in two dimensions [20]:

t ′ = ζ

ν
= 0.9825± 0.0008 ζ = 1.3100± 0.0011. (2.9)

Low-density series expansion results [19] are consistent with a surface conductivity exponent
ζs keeping its bulk valueζ .

For a triangular-shaped system of sizeL, when the pointsi andj are located at corners with
opening anglesθi andθj , according to finite-size scaling, one expects the following behaviour
at criticality:

Pij = P(θi, θj ;L) ∼ L−η(θi ,θj ) ∼ L−x(θi )−x(θj )
0ij = 0(θi, θj ;L) ∼ L−ζ(θi ,θj )/ν . (2.10)

Herex(θi) is the scaling dimension of the local order parameter at a corner with opening angle
θi . In the following, we shall also consider the three-point correlation functionPijk, which
gives the probability that the pointsi, j andk, located at corners with opening anglesθi , θj
andθk, belong to the same cluster. This quantity scales like the product of the corresponding
local order parameters, i.e. as

Pijk = P(θi, θj , θk;L) ∼ L−η(θi ,θj ,θk) ∼ L−x(θi )−x(θj )−x(θk) (2.11)

at the percolation threshold.
A dependance of the local exponents on the opening angles is generally expected since a

wedge is a scale-invariant geometry and the angles are marginal variables for the local critical
behaviour. The critical 2D Potts model being conformally invariant, one obtains the local
critical behaviour for the percolation problem at a corner using the conformal transformation
w = zθ/π , which maps the half-space onto a wedge with opening angleθ [2,3]. This leads to
the following expression for the scaling dimension of the order parameter:

x(θ) = π

θ
xs. (2.12)

3. The star–triangle transformation

Let us consider a finite random resistor network with the shape of an equilateral triangle
of sideL on the triangular lattice. Through a succession of triangle–star and star–triangle
transformations, the original system can be progressively transformed into a star with three
branches of lengthL as shown in figure 1.

At step p, in the first part of the lattice transformation, up-pointing triangles with
coordinates(i, j) and bond conductancesg(p)α (i, j) (α = 1, 2, 3) are replaced by stars with
bond conductances

γ (p)α (i, j) = g
(p)

1 (i, j)g
(p)

2 (i, j) + g(p)2 (i, j)g
(p)

3 (i, j) + g(p)3 (i, j)g
(p)

1 (i, j)

g
(p)
α (i, j)

α = 1, 2, 3

(3.1)
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Figure 1. Reduction of a triangular-shaped system to a star through a succession of triangle–star
and star–triangle transformations.

as shown in figure 2. In the second part, down-pointing stars are transformed into down-
pointing triangles and up-pointing triangles are relabelled as indicated in figure 3. Thus one
obtains the bond conductances for up-pointing triangles at stepp + 1 as

g
(p+1)
1 (i, j) = γ

(p)

2 (i, j)γ
(p)

3 (i + 1, j)

γ
(p)

1 (i + 1, j − 1) + γ (p)2 (i, j) + γ (p)3 (i + 1, j)

g
(p+1)
2 (i, j) = γ

(p)

3 (i, j + 1)γ (p)1 (i, j)

γ
(p)

1 (i, j) + γ (p)2 (i − 1, j + 1) + γ (p)3 (i, j + 1)

g
(p+1)
3 (i, j) = γ

(p)

1 (i + 1, j)γ (p)2 (i, j + 1)

γ
(p)

1 (i + 1, j) + γ (p)2 (i, j + 1) + γ (p)3 (i + 1, j + 1)
.

(3.2)

Note that surface bonds in up-pointing triangles at stepp + 1 result from the transformation
of incomplete down-pointing stars. The expressions given in (3.2) still apply in this case,
provided the conductances associated with the missing bonds are set equal to zero, i.e. with
the boundary conditions

γ
(p)

1 (i,0) = 0 γ
(p)

2 (0, j) = 0 i, j = 2, L− p
γ
(p)

3 (i, j) = 0 i = 2, L− p j = L− p − i + 2.
(3.3)

At step p = L − 1, the final star configuration is obtained after the triangle–star
transformation has been performed. Then, for example, the conductance between pointsA

andB on a sytem with sizeL is given by

gAB =
[ L−1∑
p=0

1

γ
(p)

1 (1, L− p)
+

1

γ
(p)

2 (L− p, 1)

]−1

. (3.4)
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g  (i,j)
1

(p)

γ (i,
j)

3
(p) γ (i,j)2(i,j)

(p)

g 
 (i

,j)
2(p

)

g  (i,j)
3

(p)

γ (i,j)1

(p)

Figure 2. In the triangle–star transformation, up-pointing triangles with conductancesg
(p)
α (i, j)

are transformed into stars with conductancesγ
(p)
α (i, j) given by equation (3.1).

(p+1)

g     (i,j)
1

(p+1)

γ    (i,j)2

(p)

γ    
(i+

1,j)

3
(p)

g 
   

 (i
,j)

γ

(i,j)

    (i+1,j-1)
1

(p)

2

(p
+1

)

g     (i,j)

3

(i,j+1)(i-1,j+1) (i+1,j+1)

(i+1,j-1)

(i,j)

(i+1,j)

Figure 3. The conductancesg(p+1)
α (i, j) on up-pointing triangles at stepp + 1, given in

equation (3.2), follow from star–triangle transformations on down-pointing stars. The conductances
of the star involved in the construction ofg(p+1)

1 (i, j) are indicated. They originate from different
up-pointing triangles at stepp.

The same transformation, with all the conductancesg
(0)
3 (i, j) set to zero in the initial

configuration, can be used to reduce to a star a triangular-shaped system on the square lattice
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as shown in figure 4.

A

CBC

A

B

Figure 4. A triangular-shaped system on the square lattice is obtained through a deformation of
the triangular lattice when the conductances are set to zero in one of the principal directions.

4. Finite-size scaling results

We have studied the finite-size scaling behaviour of the percolation and reduced conduction
correlation functions between corners on triangular-shaped sytems. We worked at the
percolation threshold, either on the triangular lattice (pc = 2 sin(π/18)) or on the square
lattice (pc = 1

2) [26].
On the triangular lattice (figure 1), we calculated the two-point functionsP(π3 ,

π
3 ;L),

0(π3 ,
π
3 ;L)and the three-point functionP(π3 ,

π
3 ,

π
3 ;L)whereas on the square lattice (figure 4),

we studied the two-point functionsP(π2 ,
π
4 ;L), P(π4 , π4 ;L), 0(π2 , π4 ;L), 0(π4 , π4 ;L) and the

three-point functionP(π2 ,
π
4 ,

π
4 ;L).

The initial bond configurations were generated using two types of random number
generators, a simple shift register algorithm and the ranlux97 generator. We checked that
both generators led to consistent results within the statistical errors. On the square lattice, in
order to increase the number of percolating samples, the external bonds connectingA andB
to the rest of the system in figure 4 were always assumed to be conducting.

We used system sizes of the formL = 2k up toL = 256. The star–triangle algorithm
described in section 3 led to a computation time scaling roughly asL2 lnL. The number
of samples generated wasN = 2× 107 for the triangular lattice, except for the largest size
whereN = 3× 107. On the square lattice, 4× 107 samples were generated for all sizes. The
percolation and conduction correlation functionsP(L) and0(L)were stored asn independent
averages over groups of 106 samples in order to evaluate the statistical errors. More precisely,
as defined in equation (2.5), the conduction correlation function is averaged over that part of
the 106 samples for which the two points are connected.

Effective exponents at sizeL for the percolation and conduction problems were obtained
using the two-points approximants

ηeff(L) = lnP(L/2)− lnP(2L)

ln 4
ζ/ν|eff(L) = ln0(L/2)− ln0(2L)

ln 4
. (4.1)
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ηeff

(π/3,π/3,π/3)

(π/3,π/3)

Figure 5. Percolation on the triangular lattice: effective decay exponents for the two-point (4)
and three-point (5) correlation functions plotted againstL−ω and their extrapolated values (•).

0 0.1 0.2
L

−ω

1.5

2

2.5
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3.5

ηeff

(π/2,π/4,π/4)

(π/4,π/4)

(π/2,π/4)

Figure 6. Percolation on the square lattice: effective decay exponents for the two-point (�, ♦)
and three-point (5) correlation functions plotted againstL−ω and their extrapolated values (•).

The central value of the approximants are calculated by averagingP(L) and0(L) over all the
samples. The error bars were deduced from the mean-square deviationsσ 2 of the approximants,
obtained with then statistically independent averages, as±

√
σ 2/(n− 1).

The finite-size results for the percolation exponents are shown in figure 5 for the triangular
lattice and figure 6 for the square lattice. The results for the conductivity exponents are shown
in figure 7 for both lattices.

The finite-size results were extrapolated in the following way. Assuming a single
correction-to-scaling exponentω, in each case we looked for the value ofω leading to the
best linear variation at large size for the central value of the effective exponent as a function of
L−ω. The intercept with the vertical axis gives the extrapolated valuesη = ηeff(∞) andζ/ν =
ζ/ν|eff(∞). The statistical error on the extrapolated values were deduced, as above, from the
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0 0.1 0.2 0.3
L

−ω

0.98

1

1.02

1.04

t’ eff

(π/2,π/4)

(π/3,π/3)

(π/4,π/4)

Figure 7. Conduction in triangular-shaped systems: effective decay exponents of the corner-to-
corner conduction correlation functions on the triangular (4) and the square (�,♦) lattices, plotted
againstL−ω. The dotted lines are the best linear fits used for the extrapolations and the arrow
indicates Grassberger’s result for the the bulk conductivity exponent.

Table 1. Exponents governing the decay of the percolation correlation functions (η) and the
conduction correlation functions (ζ/ν) for triangular-shaped systems at criticality on the triangular
and square lattices. The numerical values obtained for the percolation problem are compared to
the values expected from conformal invariance. The last two lines give the effective correction-to-
scaling exponentsω used in the extrapolation process.

Triangular lattice Square lattice

Angles ( π3 ,
π
3 ) ( π3 ,

π
3 ,

π
3 ) ( π2 ,

π
4 ) ( π4 ,

π
4 ) ( π2 ,

π
4 ,

π
4 )

η numerical 1.99± 0.02 3.0± 0.3 2.01± 0.05 2.65± 0.07 3.32± 0.16
η conf. inv. 2 3 2 8

3
10
3

ζ/ν numerical 0.9827± 0.0017 — 0.9829± 0.0012 0.979± 0.018 —
ω percolation 1.05 0.76 1.14 1.06 1.13
ω conduction 0.81 — 0.43 1.02 —

mean-square deviation of the extrapolated exponents deduced fromn statistically independent
sets of approximants, taking the same value ofω for the linear fit. To the statistical error, we
added a systematic error, linked to the deviation from the asymptotic regime. It was taken as
the difference between the extrapolated values when one takes (or not) into account the largest
size in the extrapolation process. Doing so, we probably overestimate the systematic error.

Due to the non-monotonous behaviour of the effective exponent for the conductance
between corners with opening angleπ4 , the error bar on the extrapolated exponent had to be
estimated differently. It was obtained through an extrapolation of the extreme values of the
effective exponents using the same method as for the central value.

The extrapolated exponents for the percolation and conduction problems are shown in
table 1.
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5. Discussion

Let us first consider the percolation problem. The decay exponents of the two- and three-
point correlation functions, following from conformal invariance, are easily obtained using
equations (2.8) and (2.10)–(2.12). Our numerical results in table 1 are in good agreement with
the expected ones, although with a lower precision for the three-point exponents, due to larger
statistical errors.

The percolation probability between two cornersP(θi, θj ;L) can be written as the sum of
two contributions. The leading one is the probability thati andj are connected without being
connected to the third cornerk which scales asL−η(θi ,θj ). The second is the probability that the
three corners are connected and it decays asL−η(θi ,θj ,θk). Thus we have a correction-to-scaling
exponent equal tox(θk) for the two-point percolation probability. Another correction is due
to the leading irrelevant operator with scaling dimension−1 at the surface [17]. This explains
the value, close to 1, of the effective correction exponentω for two-point percolation, since
the amplitude of the first correction is small.

Our main result concerns the decay exponentζ/ν which is equal tot ′ in two dimensions.
The numerical values given in table 1 for the different geometries are all quite close to the
value of t ′ for the bulk, which is given in equation (2.9). These results, together with the
surface ones [19], strongly support the existence of a single conductivity scale, independent of
the sample geometry. The influence of the opening angles can be seen in the amplitudes and
perhaps also in the correction-to-scaling exponents.

One may notice that, apart from the case of the diagonal direction on the square lattice,
the approximants for the conductivity exponents display a monotonous behaviour at large
size. This is to be compared with the non-monotonous behaviour observed in [20] for bond
percolation conductivity on the square lattice. It makes the extrapolation of the exponents more
easy, thus reducing the computational effort necessary for a given precision on the extrapolated
values.

Except for the diagonal direction on the square lattice, our error bars are about double
those of Grassberger, for a maximum system sizeL = 256 instead ofL = 4096 in [20].
If one accepts the universality of the conductivity exponent, which is strongly suggested by
our results, the triangular geometry used here appears as a potentially efficient tool to further
improve the precision on the value ofζ/ν.
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